首页> 外文OA文献 >Addition is exponentially harder than counting for shallow monotone circuits
【2h】

Addition is exponentially harder than counting for shallow monotone circuits

机译:对于浅单调,加法比指数更难指数   电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let $U_{k,N}$ denote the Boolean function which takes as input $k$ strings of$N$ bits each, representing $k$ numbers $a^{(1)},\dots,a^{(k)}$ in$\{0,1,\dots,2^{N}-1\}$, and outputs 1 if and only if $a^{(1)} + \cdots +a^{(k)} \geq 2^N.$ Let THR$_{t,n}$ denote a monotone unweighted threshold gate,i.e., the Boolean function which takes as input a single string $x \in\{0,1\}^n$ and outputs $1$ if and only if $x_1 + \cdots + x_n \geq t$. We referto circuits that are composed of THR gates as monotone majority circuits. The main result of this paper is an exponential lower bound on the size ofbounded-depth monotone majority circuits that compute $U_{k,N}$. Moreprecisely, we show that for any constant $d \geq 2$, any depth-$d$ monotonemajority circuit computing $U_{d,N}$ must have size$\smash{2^{\Omega(N^{1/d})}}$. Since $U_{k,N}$ can be computed by a singlemonotone weighted threshold gate (that uses exponentially large weights), ourlower bound implies that constant-depth monotone majority circuits requireexponential size to simulate monotone weighted threshold gates. This answers aquestion posed by Goldmann and Karpinski (STOC'93) and recently restated byHastad (2010, 2014). We also show that our lower bound is essentially bestpossible, by constructing a depth-$d$, size-$2^{O(N^{1/d})}$ monotone majoritycircuit for $U_{d,N}$. As a corollary of our lower bound, we significantly strengthen a classicaltheorem in circuit complexity due to Ajtai and Gurevich (JACM'87). Theyexhibited a monotone function that is in AC$^0$ but requires super-polynomialsize for any constant-depth monotone circuit composed of unbounded fan-in ANDand OR gates. We describe a monotone function that is in depth-$3$ AC$^0$ butrequires exponential size monotone circuits of any constant depth, even if thecircuits are composed of THR gates.
机译:令$ U_ {k,N} $表示布尔函数,该函数将每个$ N $位的$ k $字符串作为输入,表示$ k $数字$ a ^ {(1)},\ dots,a ^ {(k )} $ in $ \ {0,1,\ dots,2 ^ {N} -1 \} $,并仅当$ a ^ {((1)} + \ cdots + a ^ {(k) } \ geq 2 ^ N. $令THR $ _ {t,n} $表示单调非加权阈值门,即布尔函数,将单个字符串$ x作为输入$ x \ in \ {0,1 \} ^ n $并且仅当$ x_1 + \ cdots + x_n \ geq t $时输出$ 1 $。我们将由THR门组成的电路称为单调多数电路。本文的主要结果是计算$ U_ {k,N} $的有界深度单调多数电路的大小的指数下界。更精确地说,我们证明,对于任何常数$ d \ geq 2 $,任何深度$ dd单调多数电路计算$ U_ {d,N} $都必须具有size $ \ smash {2 ^ {\ Omega(N ^ {1 / d})}} $。由于$ U_ {k,N} $可以通过一个单调加权阈值门(使用指数大的权重)来计算,因此下界意味着恒定深度的单调多数电路需要指数大小来模拟单调加权阈值门。这回答了戈德曼和卡尔平斯基(STOC'93)提出的问题,最近又由哈斯塔德(Hastad)(2010,2014)重新提出。我们还表明,通过为$ U_ {d,N} $构造一个depth- $ d $,size- $ 2 ^ {O(N ^ {1 / d})} $个单调多数电路,我们的下界实际上是最好的。作为下界的推论,由于Ajtai和Gurevich(JACM'87),我们大大增强了电路复杂性的经典定理。他们展示了一个单音函数,其值为AC $ ^ 0 $,但对于由无界扇入“与”门或“与”门组成的任何恒定深度的单调电路,都需要超多项式大小。我们描述了一个深度为-$ 3 $ AC $ ^ 0 $的单调函数,但是需要任何恒定深度的指数大小的单调电路,即使该电路由THR门组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号